SKEW DERIVATIONS AND $U_q(sl(2))^{\dagger}$

BY

S. MONTGOMERY* AND S. PAUL SMITH*

*Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA; and Department of Mathematics, University of Washington, Seattle, WA 98195, USA

ABSTRACT

This note first describes the basic properties of the skew derivations on the polynomial ring k[X]. As a consequence of these properties it is proved that the q-analogue of the enveloping algebra of sl(2), $U_q(sl(2))$, has a unique action on C[X], where "action" means that C[X] is a module algebra in the Hopf algebra sense. This depends on the fact that the generators of a subalgebra of $U_q(sl(2))$ described by Woronowicz must act via an automorphism, and the skew derivations associated to it.

1. Skew derivations

Let A be an algebra over a field k, and fix $\sigma \in \operatorname{Aut}_k A$. A skew derivation [O] of A is a k-linear map $\delta : A \to A$ such that

$$\delta(ab) = \delta(a)b + \sigma(a)\delta(b)$$
 for all $a, b \in A$.

Since the definition depends on σ , we call δ a σ -derivation. The set of all σ -derivations is denoted by $\mathrm{Der}_{\sigma}A$. Note that $\sigma - 1 \in \mathrm{Der}_{\sigma}A$, and if $\delta \in \mathrm{Der}_{\sigma}A$, then $\sigma \delta \sigma^{-1} \in \mathrm{Der}_{\sigma}A$.

Suppose that A is commutative. Then $Der_{\sigma}A$ is a left A-module, where A acts by left multiplication. The power rule for σ -derivations becomes

$$\delta(a^n) = (a^{n-1} + a^{n-2}\sigma(a) + \dots + \sigma(a)^{n-1})\delta(a)$$

$$= \frac{(a^n - \sigma(a^n))}{a - \sigma(a)} \delta(a) \quad \text{if } a \neq \sigma(a).$$

Received July 5, 1989

[†] Both authors were supported by the NSF, S. Montgomery by grant DMS 87-00641, and S. P. Smith by DMS 87-02447.

More generally, if f is a function of a, the rule for differentiating a composition of functions becomes (when $a \neq \sigma(a)$)

$$\delta(f) = (f - \sigma(f))(a - \sigma(a))^{-1}\delta(a).$$

If $A = k[a_1, \ldots, a_n]$ is any finitely generated k-algebra, then a σ -derivation is completely determined by $\delta(a_1), \ldots, \delta(a_n)$. For the free algebra $F = k\langle X_1, \ldots, X_n \rangle$, the $\delta(X_j)$ may be chosen arbitrarily. Let I be an ideal of F. If $\sigma(I) \subset I$, and $\delta(I) \subset I$, then σ induces an automorphism of F/I, and δ induces a σ -derivation on F/I. To check that $\sigma(I) \subset I$, and $\delta(I) \subset I$, it is enough to check that $\sigma(r_{\lambda}) \in I$, and $\delta(r_{\lambda}) \in I$ for generators r_{λ} of the ideal I.

We now examine the polynomial ring k[X]. Let ∂ be the σ -derivation given by $\partial(X) = 1$. Since $\delta \in \operatorname{Der}_{\sigma} k[X]$ is determined by $\delta(X)$, if $\delta(X) = p$, then $\delta = p\partial$. Thus $\operatorname{Der}_{\sigma} k[X]$ is the free k[X]-module with basis ∂ . What are the eigenvalues of the action of σ on $\operatorname{Der}_{\sigma} k[X]$ given by $\delta \mapsto \sigma \delta \sigma^{-1}$?

LEMMA 1.1. Let $\sigma \in \operatorname{Aut}_k k[X]$ with $\sigma(X) = \alpha X + \beta$ where $\sigma, \beta \in k$. Consider the eigenvalues for the action of σ on $\operatorname{Der}_{\sigma} k[X]$.

- (a) The only possible eigenvalues are α^{n-1} , n = 0, 1, 2, ...
- (b) Suppose that α is not a root of 1. Then the eigenvectors are $(X + \beta(\alpha 1)^{-1})^n \partial$ with corresponding eigenvalues α^{n-1} , $n = 0, 1, 2, \ldots$

PROOF. Let $\delta = p\partial$. We view σ , p, $\delta \in \operatorname{End}_k K[X]$ with p acting on k[X] by left multiplication. Thus $\sigma \delta \sigma^{-1} = \sigma p \sigma^{-1} \sigma \partial \sigma^{-1}$. Now $\sigma \partial \sigma^{-1}(X) = \alpha^{-1}$, so $\sigma \partial \sigma^{-1} = \alpha^{-1}\partial$; and $\sigma p \sigma^{-1} = \sigma(p)$ because $\sigma p \sigma^{-1}(f) = \sigma(p \cdot \sigma^{-1}(f)) = \sigma(p) \cdot f$.

Thus $\sigma\delta\sigma^{-1} = \alpha^{-1}\sigma(p)\partial$, and δ is an eigenvector, with $\sigma\delta\sigma^{-1} = \mu\delta$ if and only if $\sigma(p) = p(\alpha X + \beta) = \alpha\mu p(X)$. Thus we must find eigenvectors for the action of σ on k[X].

If $\alpha = 1$ the result is trivial. If $\alpha \neq 1$, we may set $Y = X + \beta(\alpha - 1)^{-1}$. Since $\sigma(Y^n) = \alpha^n Y^n$, the eigenvectors for the σ action on $\mathrm{Der}_{\sigma} k[X]$ are the $Y^n \partial$ having eigenvalue α^{n-1}

COROLLARY 1.2. Let $\sigma(X) = \alpha X + \beta$ where α is not a root of 1. If δ_1 , $\delta_2 \in \text{Der}_{\sigma} k[X]$ satisfy $\sigma \delta_1 \sigma^{-1} = \mu \delta_1$ and $\sigma \delta_2 \sigma^{-1} = \mu^{-1} \delta_2$ for some $1 \neq \mu \in k$, then (up to scalar multiples) the only possibilities are

$$\delta_1 = \partial$$
, $\delta_2 = (X + \beta(\alpha - 1)^{-1})^2 \partial$ and $\mu = \alpha^{-1}$

or

$$\delta_1 = (X + \beta(\alpha - 1)^{-1})^2 \partial$$
, $\delta_2 = \partial$ and $\mu = \alpha$.

2. Some Hopf algebras involving skew derivations

This section gives two examples of non-commutative, and non-cocommutative Hopf algebras, both involving skew derivations. Recall that, if H is a Hopf algebra with co-multiplication $\Delta: H \to H \otimes H$, given by $\Delta(h) = \Sigma_{(h)} h_{(1)} \otimes h_{(2)}$, then an algebra A is an H-module algebra if A is an H-module, and H "measures" A; that is, $h \cdot 1 = \varepsilon(h)1$ and

$$h \cdot (ab) = \sum_{(h)} (h_{(1)} \cdot a)(h_{(2)} \cdot b) \qquad \text{for all } a, b \in A.$$

An element $\delta \in H$ is called σ -primitive if $\Delta(\delta) = \delta \otimes 1 + \sigma \otimes \delta$ for some $0 \neq \sigma \in H$. The coassociativity of H forces $\Delta(\sigma) = \sigma \otimes \sigma$; that is, σ is group-like. The properties of the antipode s of H imply that $s(\sigma) = \sigma^{-1} \in H$ and that $s(\delta) = -\sigma^{-1}\delta$. Hence if A is a H-module algebra, then σ acts on A as an automorphism, and δ acts as a σ -derivation.

EXAMPLE 2.1. Fix $0 \neq \alpha \in k$, and define $H = k[Y] * \langle \sigma \rangle$ to be the skew group ring of the group $\langle \sigma \rangle \cong \mathbb{Z}$, over the polynomial ring k[Y] where the action is $\sigma(Y) = \alpha Y$. Thus in H, $\sigma Y = \alpha Y \sigma$. Make H into a Hopf algebra by defining

$$\Delta(\sigma) = \sigma \otimes \sigma, \quad \Delta(Y) = Y \otimes 1 + \sigma \otimes Y, \quad \varepsilon(\sigma) = 1,$$

$$\varepsilon(Y) = 0, \quad s(\sigma) = \sigma^{-1}, \quad s(Y) = -\sigma^{-1}Y.$$

Thus H is neither commutative, nor co-commutative.

The commutative polynomial ring A = k[X] may be made into an H-module algebra with σ acting as the automorphism $\sigma(X) = \alpha^{-1}X$ and Y acting as the σ -derivation $\partial \in \operatorname{Der}_{\sigma} k[X]$, i.e. Y(X) = 1. Thus H is isomorphic to the subalgebra $k[\sigma, \sigma^{-1}, \partial]$ of $\operatorname{End}_k k[X]$.

As a Hopf algebra, H is similar in spirit to [S, p. 89] and to [T]. However, those examples were not represented as skew derivations. The connection between skew derivations and Hopf algebras was pointed out to one of us by Kharchenko [K]; he used the tensor algebra on the vector space generated by all skew derivations of an arbitrary algebra A to construct a Hopf algebra. Our H is the "smallest" non-cocommutative subalgebra of his construction. We thank M. Artin for suggesting we look at the special case A = k[X].

EXAMPLE 2.2. This example reappears in Section 4 in connection with $U_q(sl(2))$. Fix $0 \neq \gamma \in k$, and define $A = k\langle x, y \rangle / \langle xy - \gamma yx \rangle$. Define $\sigma \in$

Aut $k\langle x, y \rangle$ by $\sigma(x) = \gamma x$ and $\sigma(y) = \gamma^{-1} y$. Consider the σ -derivations ∂_1 , ∂_2 on $k\langle x, y \rangle$ defined by

$$\partial_1(x) = 0$$
, $\partial_1(y) = x$ and $\partial_2(x) = y$, $\partial_2(y) = 0$.

Since $\langle xy - \gamma yx \rangle$ is stable under σ , and $\partial_i(xy - \gamma yx) = 0$, we may view $\sigma \in \operatorname{Aut}_k A$ and $\partial_1, \partial_2 \in \operatorname{Der}_{\sigma} A$. Let $H = k[\partial_1, \partial_2, \sigma, \sigma^{-1}]$ be the subalgebra of $\operatorname{End}_k A$ generated by these elements.

In H the following relations hold:

(2.3)
$$\sigma \partial_1 = \gamma^2 \partial_1 \sigma, \qquad \sigma \partial_2 = \gamma^{-2} \partial_2 \sigma$$

(2.4)
$$\partial_1 \partial_2 - \gamma^{-2} \partial_2 \partial_1 = (\gamma^2 - 1)^{-1} (\sigma^2 - 1).$$

Notice that (2.4) says $\partial_1\partial_2 - \gamma^{-2}\partial_2\partial_1$ is a σ^2 -derivation of A. It is not difficult to show that H is defined by precisely these relations: first use the Diamond Lemma [B] to show that the algebra defined by the relations (2.3) and (2.4) has a basis $\sigma^k\partial_1^i\partial_2^i$, then check that these elements acting on A are linearly independent.

Make H into a Hopf algebra by defining

$$\Delta(\sigma) = \sigma \otimes \sigma, \quad \Delta(\partial_i) = \partial_i \otimes 1 + \sigma \otimes \partial_i, \quad \varepsilon(\sigma) = 1, \quad \varepsilon(\partial_i) = 0,$$
$$s(\sigma) = \sigma^{-1}, \quad s(\partial_1) = -\sigma^{-1}\partial_1, \quad s(\partial_2) = -\sigma^{-1}\partial_2.$$

This algebra H, which is neither commutative nor co-commutative, first appeared in [W], and is isomorphic to a subalgebra of $U_q(sl(2))$; see (3.1) and (3.4).

3. $U_q(sl(2))$ and its action on C[X]

This section concerns the action of $U_q(sl(2))$, the q-analogue of the enveloping algebra of sl(2), on C[X]. Fix $0 \neq q \in C$, not a root of unity. As defined by Jimbo [J] and Drinfeld [D], $U_q(sl(2)) = C[E, F, K, K^{-1}]$ is defined by relations

$$KE = q^2 E K$$
, $KF = q^{-2} F K$, $EF - FE = (K^2 - K^{-2})/(q^2 - q^{-2})$.

Make $U_q(sl(2))$ a Hopf algebra by defining

$$\Delta(E) = E \otimes K^{-1} + K \otimes E, \qquad \Delta(F) = F \otimes K^{-1} + K \otimes F, \qquad \Delta(K) = K \otimes K,$$

$$s(E) = -q^{-2}E, \qquad s(F) = -q^{2}F, \qquad s(K) = K^{-1},$$

$$\varepsilon(E) = 0, \qquad \varepsilon(F) = 0, \qquad \varepsilon(K) = 1.$$

Independently of Drinfeld and Jimbo, Woronowicz [W, Table 7, p. 150] defined an algebra which, in retrospect, is isomorphic to a subalgebra of $U_q(sl(2))$. We will denote this algebra (which depends on a parameter $0 \neq v \in \mathbb{C}$) by $W_v = \mathbb{C}[\nabla_0, \nabla_1, \nabla_2]$, with the relations

$$\nu \nabla_2 \nabla_0 - \nu^{-1} \nabla_0 \nabla_2 = \nabla_1,$$

$$\nu^2 \nabla_1 \nabla_0 - \nu^{-2} \nabla_0 \nabla_1 = (1 + \nu^2) \nabla_0,$$

$$\nu^2 \nabla_2 \nabla_1 - \nu^{-2} \nabla_1 \nabla_2 = (1 + \nu^2) \nabla_2.$$

LEMMA 3.1. Suppose that $v = q^2$. Then there is an injective algebra homomorphism $W_v \to U_a(sl(2))$ defined by

$$\nabla_0 \mapsto -qFK,$$

$$\nabla_1 \mapsto qEK,$$

$$\nabla_2 \mapsto (K^4 - 1)/(q^{-4} - 1).$$

PROOF. First consider the subalgebra $C[EK, FK, K^4, K^{-4}]$ of $U_q(sl(2))$. The defining relations are

(3.2)
$$K^4(EK) = q^8(EK)K^4, \quad K^4(FK) = q^{-8}(FK)K^4,$$

(3.3)
$$(EK)(FK) - q^{-4}(FK)(EK) = (K^4 - 1)/(q^4 - 1).$$

Consequently, the proposed images of ∇_0 , ∇_1 , ∇_2 satisfy the defining relations of W_v . Hence the proposed algebra homomorphism exists. It follows from the Diamond Lemma [B] that W_v has a basis $\nabla_2^i \nabla_0^i \nabla_1^k$ with $i, j, k \in \mathbb{N}$, and that $U_q(sl(2))$ has a basis $E^i F^j K^k$ $(i, j \in \mathbb{N}, k \in \mathbb{Z})$. The injectivity of the given map follows.

Thus we may identify W_v with its image in $U_q(\operatorname{sl}(2))$. We shall consider the slightly larger algebra $W_q:=\mathbb{C}[EK,FK,K^2,K^{-2}]$. Notice that W_q is a sub-Hopf algebra of $U_q(\operatorname{sl}(2))$; the K^2 term is required by consideration of $\Delta(EK)$, and the K^{-2} term is required by consideration of $s(K^2)$. Although $W_v\subset W_q$, W_v is not a Hopf subalgebra; this is the reason we prefer to focus on W_q .

THEOREM 3.4. Suppose that C[X] is a $W_q(sl(2))$ -module algebra with K^2 acting as the automorphism $\sigma(X) = \alpha X + \beta$. Set $Y = X + \beta(\alpha - 1)^{-1}$. Then (up to an automorphism of W_q) there are two possibilities:

(1)
$$\alpha = q^{-4}$$
 and $EK \mapsto \partial$, $FK \mapsto -q^{-4}Y^2\partial$,

(2)
$$\alpha = q^4$$
 and $EK \mapsto -q^4Y^2\partial$, $FK \mapsto \partial$,

where ∂ is the σ -derivation $\partial(Y) = 1$. Furthermore, there is no loss of generality in assuming that $\beta = 0$.

PROOF. Notice that K^2 is group-like, and EK and FK are K^2 -primitive. Therefore K^2 must act as an automorphism, and EK and FK act as skew derivations with respect to this automorphism. Write σ , δ_1 , δ_2 for the images of K^2 , EK, FK in End_CC[X]. After (3.2) and (3.3) the following relations hold:

(3.5)
$$\sigma \delta_1 \sigma^{-1} = q^4 \delta_1, \qquad \sigma \delta_2 \sigma^{-1} = q^{-4} \delta_2,$$

(3.6)
$$\delta_1 \delta_2 - q^{-4} \delta_2 \delta_1 = (\sigma^2 - 1)/(q^4 - 1).$$

Since q^4 is an eigenvalue for the σ action on $Der_{\sigma}C[X]$, it follows from (1.1) that q^4 is a power of α , and hence α is not a root of unity. Set $Y = X + \beta(\alpha - 1)^{-1}$. As in (1.1), Y is a σ -eigenvector, and replacing X by Y, we may take $\beta = 0$.

By (1.2) either

(1)
$$\delta_1 = \gamma_1 \partial$$
, $\delta_2 = \gamma_2 Y^2 \partial$ and $\alpha = q^{-4}$ or

(2)
$$\delta_1 = \gamma_1 Y^2 \partial$$
, $\delta_2 = \gamma_2 \partial$ and $\alpha = q^4$,

where γ_1 and γ_2 are scalars to be determined by the requirement that (3.6) holds. To determine $\gamma := \gamma_1 \gamma_2$ we compute the action of the expressions in (3.6) on Y^n . In case (1)

$$\gamma(\partial Y^2\partial - \alpha Y^2\partial^2): Y^n \mapsto \gamma(1-\alpha^n)(1+\alpha^n)(1-\alpha)^{-1}Y^n,$$

$$(\sigma^2-1)/(q^4-1): Y^n \mapsto \alpha(\alpha^{2n}-1)(1-\alpha)^{-1}Y^n.$$

Therefore $\gamma = -\alpha$. In case (2)

$$\gamma(Y^{2}\partial^{2} - \alpha^{-1}\partial Y^{2}\partial) : Y^{n} \mapsto \gamma(1 - \alpha^{n})(1 + \alpha^{n})\alpha^{-1}(\alpha - 1)^{-1}Y^{n},$$

$$(\sigma^{2} - 1)/(g^{4} - 1) : Y^{n} \mapsto (\alpha^{2n} - 1)(\alpha - 1)^{-1}Y^{n}.$$

Therefore $\gamma = -\alpha$.

The map $EK \mapsto \gamma_1 EK$, $FK \mapsto \gamma_1^{-1} FK$, $K^2 \mapsto K^2$ is an automorphism of W_q . Thus, up to an automorphism of W_q , we may assume that $\gamma_1 = 1$, and so $\gamma_2 = \gamma = -\alpha$, or $\gamma_2 = 1$ and $\gamma_1 = -\alpha$.

COROLLARY 3.7. Suppose that C[X] is a $U_q((2))$ -module algebra. Then (up to isomorphism of module algebras, and automorphisms of $U_q(sl(2))$ there are two possibilities:

(1)
$$K = \sigma: X \mapsto a^{-2}X$$
, $E = \partial \sigma^{-1}$, $F = -a^{-4}X^2\partial \sigma^{-1}$.

(2) $K = \sigma: X \mapsto q^2 X$, $E = -q^4 X^2 \partial \sigma^{-1}$, $F = \partial \sigma^{-1}$, where ∂ is the σ -derivation $\partial(X) = 1$.

PROOF. Instead of proving (3.6) up to an automorphism of W_q , set $X = \gamma_1^{-1}Y$ and $X = \gamma_2^{-1}Y$ in cases (1) and (2). Thus X is a K^2 -eigenvector of eigenvalue α . Write $K(X) = \xi X$; thus $\xi^2 = \alpha$ in the notation of (3.6). In case (1), $KE(X) = \sigma \partial \sigma^{-1}(X) = \sigma \partial (\xi^{-1}X) = \sigma(\xi^{-1}) = \xi^{-1}$, and $EK(X) = \partial (X) = 1$. However, $KE = q^2 EK$ so $\xi^{-1} = q^2$ and $\xi = q^{-2}$ in case (1). The second possibility is obtained in a similar manner.

The statement of (3.7) may be slightly changed to avoid mention of automorphisms of $U_a(sl(2))$.

COROLLARY 3.8. Suppose that C[X] is a $U_q(sl(2))$ -module algebra. There exists $Y \in C[X]$ such that C[Y] = C[X], and one of the following two possibilities occurs:

- (1) $K = \sigma: Y \mapsto q^{-2}Y, \quad E = \partial \sigma^{-1}, \quad F = -q^{-4}Y^2\partial \sigma^{-1},$
- (2) $K = \sigma : Y \mapsto q^2 Y$, $E = -q^4 Y^2 \partial \sigma^{-1}$, $F = \partial \sigma^{-1}$, where ∂ is the σ -derivation $\partial(Y) = 1$.

This section was motivated by analogy with the action of U(sl(2)) on $\mathbb{C}[X]$ as differential operators. That action is given by

$$E = \partial$$
, $H = -2X\partial$, $F = -X^2\partial$,

where $\partial = d/dX$. Observe that C[X] is the dual of a Verma module, and contains the trivial module.

4. A "base affine space" for $U_q(sl(2))$

Recall the natural action of U(sl(2)) acting as differential operators on the commutative ring C[X, Y]. The action is obtained as follows. Let sl(2) act on C^2 in the obvious way. There is a unique extension of this to an action on $S(C^2)$, the symmetric algebra, such that sl(2) acts as derivations. Explicitly the action is given by

$$E = X\partial/\partial Y$$
, $H = X\partial/\partial X - Y\partial/\partial Y$, $F = Y\partial/\partial X$.

The decomposition of $S(\mathbb{C}^2) = \bigoplus_n S^n(\mathbb{C}^2)$ into its homogeneous components is an sl(2)-module decomposition, and $S^n(\mathbb{C}^2)$ is the unique (n+1)-dimensional sl(2)-module.

What is the analogue of this for $U_q(sl(2))$?

THEOREM 4.1 ([L], [R3]). Suppose that q is not a root of unity. Then, for each n > 0 there are precisely 4 simple $U_q(sl(2))$ -modules (up to isomorphism) of dimension n.

THEOREM 4.2. If q is not a root of unity, then for each $n \ge 1$, W_v $(v = q^2)$ has exactly one simple module of dimension n.

PROOF. This follows from [W, Theorem 5.4], with the proviso that inverting the element K^4 has eliminated all except one of the 1-dimensional modules for W_{ν} . See also [BS].

THEOREM 4.3. Let $A = \mathbb{C}[x, y]$ where $xy = q^2yx$. There is an action of $W_q(sl(2)) = \mathbb{C}[EK, FK, K^{\pm 2}]$ on A such that

- (a) A is a $W_a(sl(2))$ -module algebra;
- (b) each homogeneous component $A_n = \bigoplus_{1 \le i \le n} \mathbb{C} x^i y^{n-i}$ is a simple $W_q(s|(2))$ -module of dimension n+1;
- (c) each A_n remains simple over the subalgebra $\mathbb{C}[EK, FK, K^{\pm 4}] \cong W_{\nu}$ $(\nu = q^2)$;
- (d) A is a $U_q(sl(2))$ -module algebra, and the action of E, F, K on A_1 is E(x) = 0, E(y) = qx, $F(x) = q^{-1}y$, F(y) = 0, K(x) = qx, $K(y) = q^{-1}y$.

PROOF. This follows at once from Example 2.2 and Lemma 3.1. Define K^2 to act via the automorphism $x \mapsto q^2x$, $y \mapsto q^{-2}y$ and EK, FK to act as the σ^2 -derivations

$$EK: x \mapsto 0, y \mapsto x, \quad FK: x \mapsto y, y \mapsto 0.$$

It is routine to check (b) and (c).

Clearly the same question can be asked for $U_q(\mathfrak{g})$. Let G be the simply connected, connected algebraic group with $\operatorname{Lie} G = \mathfrak{g}$, let B be a Borel subgroup, with unipotent radical N. The action of $U(\mathfrak{g})$ as differential operators on $\mathcal{O}(G/N)$ is such that each finite-dimensional simple \mathfrak{g} -module appears in $\mathcal{O}(G/N)$ with multiplicity 1. What is the analogue of $\mathcal{O}(G/N)$ for $U_q(\mathfrak{g})$? In effect we are asking for a quantum version of Borel-Weil-Bott. The action of $\operatorname{sl}(2)$ on $S^n(\mathbb{C}^2)$ may be interpreted as an action on the global sections of the line bundle $\mathcal{O}_{\mathbb{P}}(n)$. Pursuing this analogy, one may interpret A as the homogeneous coordinate ring of the "quantum projective line", and the homogeneous components A_n as the sections of line bundles.

Final Remarks. Consider the relationship between the three different algebras $U_q(sl(2))$, $W_q(sl(2))$ and W_v with $v=q^2$. There are inclusions as follows:

$$U_q(\operatorname{sl}(2)) = \mathbb{C}[E, F, K^{\pm 1}]$$

$$\supset W_q(\operatorname{sl}(2)) = \mathbb{C}[EK, FK, K^{\pm 2}] \supset W_v = \mathbb{C}[EK, FK, K^{\pm 4}].$$

The first two are Hopf algebras, but the last one is not. If n > 0, then $U_q(sl(2))$ has 4 distinct *n*-dimensional simple modules, $W_q(sl(2))$ has 2 distinct *n*-dimensional simple modules and W_v has a unique *n*-dimensional simple module. In terms of irreducible representations, W_v is the most like U(sl(2)).

References

- [BS] A. D. Bell and S. P. Smith, Some 3-dimensional skew polynomial rings, in preparation.
- [B] G. Bergman, The Diamond Lemma for Ring Theory, Adv. Math. 29 (1978), 178-218.
- [D] V. G. Drinfeld, Quantum Groups, Proc. Int. Congr. Math. Berkeley 1 (1986), 798-820.
- [J] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
- [K] V. K. Kharchenko, Skew derivations of prime rings, Lecture, Stefan Banach Center, Warsaw, 1988.
- [L] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237-249.
- [M] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi and K. Ueno, Representations of quantum groups and a q-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris 307 (1988), 559-564.
 - [O] O. Ore, Theory of non-commutative polynomials, Ann. of Math. 34 (1933), 480-508.
- [R1] M. Rosso, Comparaison des groupes SU(2) quantiques de Drinfeld et de Woronowicz, C. R. Acad. Sci. Paris 304 (1987), 323-326.
- [R2] M. Rosso, Representations irreducibles de dimension finie du q-analogue de l'algebre enveloppante d'une algebre de Lie semisimple, C. R. Acad. Sci. Paris 305 (1987), 587-590.
- [R3] M. Rosso, Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra, Commun. Math. Phys. 117 (1988), 581–593.
 - [S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [T] E. J. Taft, The order of the antipode of finite dimensional Hopf algebras, Proc. Natl. Acad. Sci. U.S.A. 68 (1971), 2631-2633.
- [W] S. L. Woronowicz, Twisted SU(2)-group. An example of a non-commutative differential calculus, Publ. R.I.M.S., Kyoto Univ. 23 (1987), 117-181.